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Abstract. A generalized three-level Jaynes–Cummings model (JCM) which includes various
ordinary JCMs is shown explicitly to have anSU(3) structure: the Hamiltonian can be treated
as a linear function of the generators of theSU(3) group. Based on this algebraic structure, the
exact algebraic solutions of the Schrödinger equation, as well as eigenvalues and eigenstates of
the Hamiltonian, are obtained by an algebraic method. Thus the three-level JCM is completely
solved algebraically. TheSU(N) structure of the N-level JCM is also constructed explicitly and
can be solved by the same method.

During the last three decades since 1963 when its original form was first proposed [1], the
Jaynes–Cummings model (JCM) has been widely used as a full quantum model describing
interactions between light and matter [2, 3]. This model, along with many generalized
forms, has two apparent advantages. First, the irreducible invariant subspace of the
Hilbert space is finite, and it is mathematically soluble. Second, this model exhibits many
fascinating quantum effects which can be tested by experiments [4], such as the quantum
collapse and revival of atomic inversion [5], squeezing of the radiation field [6] and optical
Schr̈odinger-cat states [7]. The remarkable advance in cavity quantum electrodynamics
(QED) experiments involving single atoms (usually Rydberg atoms) within single-mode
cavities (the micromaser) [8, 9] and the possibility of finding solutions (often exact) to
fundamental models of the quantum theory of interacting field and atoms have excited
many efforts to exploit and extend this model. As a result, many generalized forms of
JCMs have been proposed. For instance, double-resonance experiments demand more than
two levels in the system of interest, because a third level is required to support the second
resonance.

It has been noted by many authors that various JCMs exhibit some kinds of similarities
[10]. Thus, it is natural to expect that there is a unified description for the solutions of
all types of JCMs. It has been shown that all types of two-level JCM have anSU(2)
structure [11]: the Hamiltonian can be treated as a linear function of the generators of an
SU(2) group,H = f0(1) +

∑3
i=0 fi(1)Xi . WhereXi(i = 1, 2, 3) forms a basis of the

SU(2) algebra, the operator1 which commutes withXi can be treated as a constant in
the irreducible representation space of theSU(2) group. Thus any two-level JCM can be
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mathematically treated as a spin-1
2 system in an external magnetic field. From this algebraic

structure, it is easy to obtain the evolution matrix, as well as the eigenvalues and eigenstates
of the Hamiltonian which are simply algebraic expressions.

It is natural to expect, as pointed out in [11], that anN -level JCM will have anSU(N)
structure, as long as there is conservation of excitation which is in general true for most
of the generalized JCMs. In the following, we construct this algebraic structure explicitly
and, from the viewpoint of algebraic dynamics [12, 13], give a unified description for the
eigenvalues and eigenstates of the Hamiltonian, as well as the evolution matrix. When
N = 3, the solutions are shown to be simply algebraic expressions.

Consider anN -level atom interacting with one mode of electromagnetic field; the
Hamiltonian reads

H = HA +HF+HI (1)

where the free atom partHA and free field partHF are

HA =
N∑
i=1

ωib
+
i bi HF = ωa+a + ρ(a+a).

ρ(a+a) is usually taken asβa+2a2 (the Kerr cavity [14]), but here we treat it as a general
real analytic function ofa+a. The atomic levels are labelled according to their energy,
the first one being the lowest level, and theN th level the highest. We have taken ¯h = 1
for simplicity, ωi(i = 1, . . . , N) is the ith atomic energy (frequency) andω is the mode
frequency.b+i andbi are the creation and annihilation operators of an electron at leveli,
while a+ anda are those of a photon in the mode.b+i andbi obey the Fermion commutation
rules, anda+, a obey the Boson commutation rules:{bi, b+j } = δij , {bi, bj } = {b+i , b+j } = 0;
[a, a+] = 1, [a, bi ] = [a+, bi ] = 0. The interaction partHI is usually chosen as one of the
following three types:

HI =
N∑
i=2

ρi(a
+a)akb+i bi−1+ HC (4-type)

or

HI =
N∑
i=2

ρi(a
+a)akb+i b1+ HC (V -type)

or

HI =
N−1∑
i

ρi(a
+a)a+kb+i bN + HC (3-type)

where HC means Hermitian conjugate, andρi(a+a) is the density-dependent coupling
coefficients,a+a is the ordinary number operator. When the integerk > 1, the above
interactions are usually called density-dependent multiphoton JCMs [10, 11].

The Hamiltonian has two apparent constants of motion: one is the total electron number
operatorPE, PE =

∑N
i=1 b

+
i bi , and the other is the conservation of excitation1:

1 = a+a + k
N∑
i=1

ib+i bi (4-type) 1 = a+a + k
N∑
i=2

b+i bi (V -type)

1 = a+a − k
N−1∑
i=1

b+i bi (3-type).
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In this paper, we restrict ourselves to the one-electron case:
∑N

i=1 b
+
i bi = 1. Thus, the

states

|φ(m, i)〉 = 1√
m!
a+mb+i |0〉 (2)

form a basis of the Hilbert space, where|0〉 denotes the no-photon and ground (lowest)
atomic state. In this case, the Fermion operatorsbi have the following project properties:
bibj = 0 or b+i bj b

+
k bl = δjkb+i bl . Note that the operatorsSij = b+i bj (i, j = 1, . . . , N) form

a basis of theU(N) algebra: [Sij , Skl ] = δjkSil− δilSkj . From these commutators, it is easy
to show that the operators

Aij =
√
(1− ki)!

1!

(1− kj)!
1!

akia+kj b+i bj (3)

form a basis of theU(N) algebra with the same commutation relations as that ofSij ,

[Aij , Akl ] = δjkAil − δilAkj (4)

where (1 − m)!/1! = [1(1 − 1) · · · (1 − m + 1)]−1, and the operator1 (of 4-type)
commutes with all members of the algebra [1,Aij ] = 0. Using the relations

a+mam = (a+a)!
(a+a −m)! ama+m = (a+a +m)!

(a+a)!
Aij can also be written as

Aij =
√
(1− kj)!
(1− ki)! a

+k(j−i)b+i bj Aji = A+ij (i 6 j). (5)

Taking into account the fact that there is a relation forAii ,
∑N

i=1Aii =
∑N

i=1 b
+
i bi = 1,

the algebra formed by{Aij } is indeedSU(N). From expression (5), we can write the
Hamiltonian of theN -level JCM (1) of4-type as a linear function ofAij ,

H = ω1+
N∑
i=1

ω′i (1)Aii +
N∑
i=2

(fi(1)Ai,i−1+ HC) (6)

whereω′i (1) = ωi−ki+ρ(1−ki), andfi(1) = ρi(1−ki)
√
(1−k(i−1))!
(1−ki)! which is obtained

from the project properties ofbi :

ρi(a
+a)akb+i bi−1 = ρi(1− ki)akb+i bi−1

ρ(a+a) =
N∑
i=1

ρ(1− ki)b+i bi . (7)

Since the constant of motion1 commutes with every member of theSU(N) algebra, it can
be treated as a constant in the irreducible representation space of the algebra

0(m) = {|φ(m,N)〉, |φ(m+ k,N − 1)〉, . . . , |φ(m+ (N − 1)k, 1)〉} (8)

which is also the irreducible invariant subspace of the Hamiltonian, and the state space is
the summation of all0(m).

Similarly, for theV -type or3-type interaction, the Hamiltonian can also be treated as
linear function of the generators of theSU(N) group. For theV -type, the generators are

Ai1 =
√
(1− k)!
1!

akb+i b1 A1i = A+i1 (i 6= 1) (9)

A11 = b+1 b1 Aij = b+i bj (i, j 6= 1). (10)
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They have the same commutation relations as that of (5). The Hamiltonian expressed in
terms ofAij is

H = ω1+
N∑
i=1

ω′i (1)Aii +
N∑
i=2

(fi(1)Ai1+ HC) (11)

where

fi(1) = ρi(1− k)
√

1!

(1− k)!
and

ω′1(1) = ω1+ ρ(1) andω′i (1) = ωi − k + ρ(1− k).
Similarly, for the case of3-type, the generators with the same commutation relations are
chosen as

AiN =
√

1!

(1+ k)! a
+kb+i bN ANi = A+iN (i 6= N) (12)

ANN = b+NbN Aij = b+i bj (i, j 6= N) (13)

and the linear form of the Hamiltonian reads

H = ω1+
N∑
i=1

ω′i (1)Aii +
N−1∑
i=1

(fi(1)AiN + HC) (14)

where

ω′i (1) = ωi + k + ρ(1+ k) (i 6= N) ω′N(1) = ωN + ρ(1)
and

fi(1) = ρi(1+ k)
√
(1+ k)!
1!

.

In the above discussions, the key procedures to obtain the algebraic structure are based
on the existence of the conservation of excitation1 and the project properties ofb+i bj .
These two properties enable us to construct an algebra whose members commute with1.
In fact, in the Hamiltonian (1), for all three types of interaction, there are onlyN − 1 ways
of coupling betweenN atomic levels: for4-type only adjacent levels are coupled, for
V -type, the coupling is restricted between the lowest level and other levels, and for3-type
only the highest level is coupled with other levels. It is easy to see that any kind ofN -level
JCM has a conservation of excitation in the form1 = a+a +∑i cib

+
i bi , if there are only

N − 1 ways of coupling betweenN atomic levels where the coefficientsci is determined
by the interaction. As a result, for anyN -level JCM, in the one-electron case, the algebraic
structure isSU(N) if it has a conservation of excitation.

WhenN = 2, all three kinds of Hamiltonian coincide with each other, and theSU(2)
algebraic structure is the same as that of [11]. In this case, the JCM behaves like a spin-1

2
system interacting with an external magnetic field; the solutions of the equation of motion
can be obtained algebraically in the same way as that of spin-1

2 systems. In the following,
we show that, whenN > 2, the solutions of this kind of linear system can also be worked
out by an algebraic method.

When a Hamiltonian is expressed as a linear function of a Lie group’s generators,
there are many algebraic methods to obtain solutions of the equations of motion. One of
the methods that can deal with general Lie algebraic structure is the algebraic dynamics
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[12, 13]. An important procedure of algebraic dynamics to obtain solutions of a linear
system is to find a gauge transformation that transforms the time-dependent Hamiltonian
into a linear function of the Cartan operators of the Lie algebra. Then the exact solutions
are obtained by the inverse gauge transformation. Since this method involves integrating
a set of ordinary differential equations, it cannot be used directly in the Hamiltonians (6),
(11) and (14) because the coefficientsfi contain the operator1. This difficulty can be
overcome if we restrict ourselves in an irreducible representation subspace of theSU(N)

algebra in which the operator1, and thus the coefficientsfi , can be treated as a constant.
The detailed procedure to obtain solutions for a general time-dependent linear system which
covers the case of the above discussed JCM can be found in [12, 13].

In the following, we show that, in the case when the considered Hamiltonian is
autonomous (it is not dependent on time explicitly), we need only solve algebraic equations
to obtain the solutions of the equations of motion, as well as the eigenvalues and eigenstates
of the Hamiltonian, if we let the gauge transformation be independent of time. As a result,
the solutions for theN -level JCM are algebraic expressions whenN 6 4. The eigenphases
in the time-dependent case can also be obtained in this way.

According to standard Lie algebraic theory [15, 16], if a Hermitian operator is a linear
function of the generators of a compact semisimple Lie group, it can be transformed
into a linear combination of the Cartan operators of the corresponding Lie algebra by
the transformation

H → H ′ = UHU−1 (15)

whereU is an element of the group which in general has the form

U =
N∏
i=1

exp(xiAi) (16)

and {Ai} (i = 1, . . . , N) is a basis set in Cartan standard form of the semisimple Lie
algebra, andxi can be set to zero if the correspondingAi is a Cartan operator (an element
of the Cartan subalgebra). The order of the operators in the above equation can be chosen
arbitrarily, but the coefficientsxi are dependent on the order.

From equation (15), the procedure to obtain the solutions of a linear autonomous system
is as follows.

(1) Put the expression ofU , equation (16), into the right-hand side of (15) and let the
coefficients of the non-Cartan operator vanish. Thus one obtains a set of algebraic equations.
From these algebraic equations one can obtain a set of solutions ofxi .

(2) From the eigenvalues and eigenstates ofH ′ which are the common eigenvalues and
eigenstates of the Cartan operators, one obtains the Hamiltonian’s eigenvalues which equal
that ofH ′ and the eigenstates by inverse transformationU−1.

(3) The matrix elements of the time evolution operator can be obtained easily from the
eigenvalues and eigenstates of the Hamiltonian. Thus one can obtain the solutions of the
equations of motion for any initial conditions.

In the first step, we need to assume an order of the operators on the right-hand side of
(16). Although any specified order has a solution, a properly chosen order can simplify the
procedure to obtain the coefficientsxi . For theN -level JCM withSU(N) structure (whose
Cartan operators areAii = b+i bi), the transformation operatorU can be chosen as

U = exp(xN1AN1) exp(xN2AN2) . . .exp(x1NA1N) (17)

where the order of the operators of exp(xijAij )(i 6= j) is arranged according to the roots
of Aij in a decreasing way. For example, the root ofAN1 is highest, and that ofA1N is
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lowest. With this specification, in our experience the coefficientsxij are relatively easy to
work out. Of course, there exist other equally effective choices, especially when one deals
with a specified system.

As an illustration, consider the three-level JCM of4-type. Another case can be worked
out similarly. Many applications of three-level JCMs can be found, for example, in [17–23].
The Hamiltonian of the three-level JCM of4-type reads

H = ω1+
3∑
i=1

ω′iAii + f2A12+ f3A23+ f2A21+ f3A32. (18)

The transformationU is chosen to be six successive transformations

U = U31U21U32U12U23U13 (19)

whereUij = exp(xij (1)Aij ), and the coefficientsxij are determined from the following
equations:

−ω′x13− f2x23− x13(ω
′
3− f3x23) = 0

f3− f2x13− ω′2x23+ ω′3x23− f3x
2
23 = 0 (20)

f2− ω′1x12− f2x
2
12+ f3x13+ x12(ω

′
2+ f3x23) = 0 (21)

f3− (ω′3− f3x23)x32+ (ω′2− f2x12+ f3x23)x32 = 0 (22)

f2+ (ω′1+ f2x12)x21− x21(ω
′
2− f2x12+ f3x23) = 0 (23)

(ω′1+ f2x12)x31− (ω′3− f3x23)x31+ f2x32 = 0. (24)

After the transformation (19), the Hamiltonian becomes

H ′ = ω1+ (ω′1+ f2x12)b
+
1 b1+ (ω′2− f2x12+ f3x23)b

+
2 b2+ (ω′3− f3x23)b

+
3 b3. (25)

Note that the solutions ofxij from equations (20)–(24) are algebraic expressions ofω′i and
fi(i = 1, 2, 3): from equations (20) we obtain the solutions ofx13 and x23; putting the
results into equation (21), we obtainx12 by solving a two-order algebraic equation;x32,
x21, x31 can be obtained in the same way. In fact, equations (20)–(24) are obtained by
successively applying the transformationH → UijHU

−1
ij , and after each one or two steps

we require that the corresponding coefficients ofAij vanish. For example, after the first
two transformationsU13 andU23 we obtain equation (20) from the requirement that the
coefficients ofA13 andA23 vanish. Then after the third transformationU12 equation (21) is
obtained by the requirement that the coefficient ofA12 equals zero. The following equations
(22)–(24) are obtained in the same way.

The key of the above procedure is that the vanished generatorsAij do not reappear
in following steps of transformations. This results from the choice of the order ofUij in
equation (19). Indeed, forSU(N) algebra, we have the following equations:

exp(xAij )Aii exp(−xAij ) = Aii − xAij
exp(xAij )Ajj exp(−xAij ) = Ajj + xAij
exp(xAij )Aji exp(−xAij ) = Aji + x(Aii − Ajj )− x2Aij

exp(xAij )Ami exp(−xAij ) = Ami − xAmj (m 6= i, j)
exp(xAij )Ajn exp(−xAij ) = Ajn + xAin (n 6= i, j)
exp(xAij )Amn exp(−xAij ) = Amn (m, n 6= i, j). (26)

Thus, if both Aij and Amn have positive (or negative) roots, then the transformation
exp(xAij ) transformsAmn into a linear combination of some generators whose absolute
values of their roots are equal to or larger than that ofAmn, but the sign of the roots
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remain unchanged. Taking into account the fact that there is anSU(2) subalgebra in
the SU(3) algebra, the order ofUij in equation (19), which is arranged according to the
corresponding roots, ensures that the vanished roots do not reappear during the following
steps of transformations.

From equation (25), it is easy to see that the common eigenstates ofH ′ and1 are
{|φ(m, i)〉} of equation (2), and the corresponding eigenvaluesEm,i are

Em,1 = (m+ k)ω + ω′1(m+ k)+ f2(m+ k)x12(m+ k)
Em,2 = (m+ 2k)ω + ω′2(m+ 2k)− f2(m+ 2k)x12(m+ 2k)+ f3(m+ 2k)x23(m+ 2k)

Em,3 = (m+ 3k)ω + ω′3(m+ 3k)− f3(m+ 3k)x23(m+ 3k). (27)

{Em,i} are also eigenvalues of the Hamiltonian correspond to the eigenstate|9(m, i)〉 =
U |φ(m, i)〉 which can be easily obtained from the project properties ofAij : (Aij )2 = 0, or
exp(xijAij ) = 1+ xijAij . From the Hamiltonian’s eigenvalues and eigenstates, we obtain
the time evolution matrix

U(t) =
∑
m,i

|9(m, i)〉 exp(−iEm,i t)〈9(m, i)|. (28)

It is block diagonalized in the basis{|φ(m, i)〉} and every block is a 3× 3 submatrix.
In summary, based on the existence of conservation of excitation and the project property

of the Fermion annihilation operatorsbi , we construct a unifiedSU(N) algebraic structure of
a generalizedN -level JCM. It is the conservation of excitation which leads to theSU(N)

structure that makes various JCMs exhibit similarity. Furthermore, theSU(N) structure
enables us to describe the solutions of the equation of motion in a unified way.

Although, we restrict ourselves to the one-electron case, the above discussions are
equally applicable to theN − 1 electron case in anN -level JCM. In fact, from the view-
point of electron–hole duality, the annihilation operatorbi can be viewed as the hole creation
operator andb+i the hole annihilation operatorc+i = bi , ci = b+i . Thus the Hamiltonian in
this case can be viewed as a hole interacting with one mode of the field. The total number
of holes

∑N
i=1 c

+
i ci = 1 is conserved. This leads to the project property ofci : cicj = 0.

Thus, as in the one-electron case, we can construct anSU(N) algebraic structure for this
one-hole case. As a result, the two-electron case in the three-level JCM also possesses an
SU(3) structure.

The method used to obtain the solutions for the three-level JCM can be similarly used
for other cases. In the two-level case, the result is the same as that of [11]. For the four-
level case, the solutions can also be written as algebraic expressions. However, when the
atomic levelN > 5, the general solution cannot be written as an algebraic expression and
thus we need to resort to a numeric method to find solutions in an irreducible representation
subspace0(m) of equation (8).
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