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Abstract. A generalized three-level Jaynes—Cummings model (JCM) which includes various
ordinary JCMs is shown explicitly to have &t/ (3) structure: the Hamiltonian can be treated

as a linear function of the generators of ¥ (3) group. Based on this algebraic structure, the
exact algebraic solutions of the Séldinger equation, as well as eigenvalues and eigenstates of
the Hamiltonian, are obtained by an algebraic method. Thus the three-level JCM is completely
solved algebraically. Th8U (N) structure of the N-level JCM is also constructed explicitly and
can be solved by the same method.

During the last three decades since 1963 when its original form was first proposed [1], the
Jaynes—Cummings model (JCM) has been widely used as a full quantum model describing
interactions between light and matter [2,3]. This model, along with many generalized
forms, has two apparent advantages. First, the irreducible invariant subspace of the
Hilbert space is finite, and it is mathematically soluble. Second, this model exhibits many
fascinating quantum effects which can be tested by experiments [4], such as the quantum
collapse and revival of atomic inversion [5], squeezing of the radiation field [6] and optical
Schibdinger-cat states [7]. The remarkable advance in cavity quantum electrodynamics
(QED) experiments involving single atoms (usually Rydberg atoms) within single-mode
cavities (the micromaser) [8,9] and the possibility of finding solutions (often exact) to
fundamental models of the quantum theory of interacting field and atoms have excited
many efforts to exploit and extend this model. As a result, many generalized forms of
JCMs have been proposed. For instance, double-resonance experiments demand more than
two levels in the system of interest, because a third level is required to support the second
resonance.

It has been noted by many authors that various JCMs exhibit some kinds of similarities
[10]. Thus, it is natural to expect that there is a unified description for the solutions of
all types of JCMs. It has been shown that all types of two-level JCM havéa(R)
structure [11]: the Hamiltonian can be treated as a linear function of the generators of an
SU(2) group, H = fo(A) + Z?:Ofi(A)X,-. Where X; (i = 1, 2, 3) forms a basis of the
SU(2) algebra, the operaton which commutes withX; can be treated as a constant in
the irreducible representation space of #i1é(2) group. Thus any two-level JCM can be
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mathematically treated as a spﬁnsystem in an external magnetic field. From this algebraic
structure, it is easy to obtain the evolution matrix, as well as the eigenvalues and eigenstates
of the Hamiltonian which are simply algebraic expressions.

It is natural to expect, as pointed out in [11], that/sHevel JCM will have anSU (N)
structure, as long as there is conservation of excitation which is in general true for most
of the generalized JCMs. In the following, we construct this algebraic structure explicitly
and, from the viewpoint of algebraic dynamics [12,13], give a unified description for the
eigenvalues and eigenstates of the Hamiltonian, as well as the evolution matrix. When
N = 3, the solutions are shown to be simply algebraic expressions.

Consider anN-level atom interacting with one mode of electromagnetic field; the
Hamiltonian reads

H = Ha + Hr + H, (1)

where the free atom pafi, and free field partir are
N
Hp = Zwibfb,- He=wa"a+ p(ata).
i=1

p(a*a) is usually taken agat2a? (the Kerr cavity [14]), but here we treat it as a general
real analytic function ofzta. The atomic levels are labelled according to their energy,
the first one being the lowest level, and th¢h level the highest. We have takén= 1

for simplicity, w;(i = 1, ..., N) is theith atomic energy (frequency) and is the mode
frequency.b;” andb; are the creation and annihilation operators of an electron at level
while a* anda are those of a photon in the modg" andb; obey the Fermion commutation
rules, and:*, a obey the Boson commutation rulegs;, b;’} =8, {bi, bj} = {b], b;’} =0;
[a,a™] =1, [a,b;]] =[a™, b;] = 0. The interaction part], is usually chosen as one of the
following three types:

N
Hy =) pia a)d'bfbii+He  (E-type)
i=2
or
N
H =) pi(ata)a*b} by +HC (V-type)
i=2
or
N-1
H = Z pi(ata)a™ b by +He (A-type)

where HC means Hermitian conjugate, ang(a*a) is the density-dependent coupling
coefficients,a*a is the ordinary number operator. When the integer 1, the above
interactions are usually called density-dependent multiphoton JCMs [10, 11].

The Hamiltonian has two apparent constants of motion: one is the total electron number
operatorPg, Pg = Z,N:l b,.*bi, and the other is the conservation of excitatitn

N N
A=ata+k) ib'b; (E-type) A=ata+k) b'b (V-type)
i=1 =2

N-1
A=ata—k Z bt b; (A-type).
i=1
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In this paper, we restrict ourselves to the one-electron cagé; b b; = 1. Thus, the
states

1 +mp+

=0 @)
form a basis of the Hilbert space, whel@® denotes the no-photon and ground (lowest)
atomic state. In this case, the Fermion operaterBave the following project properties:
bib; = 0 orb;"b;b; b; = §;:b; b;. Note that the operatot§; = b;"b;(i, j = 1,..., N) form

a basis of th&/ (N) algebra: Bi;, Su] = 8xSi — 8;1Sk;. From these commutators, it is easy
to show that the operators

(A — ki) (A — kj)!

lp(m, i) =

Aij = N A aatblh 3)
form a basis of thd/(N) algebra with the same commutation relations as thé; of
[Aij, Aul = 8jx A — 81 A 4)

where (A — m)!/A! = [A(A —1)---(A —m + D]7L, and the operaton (of E-type)
commutes with all members of the algebr®, [A;;] = 0. Using the relations
imom (@) moam _ (@Ta+m)!

" (ata —m)! “ = (ata)!

A;; can also be written as

[(A =KDV ki L

Taking into account the fact that there is a relation for, Y0, A;; = YN b b = 1,
the algebra formed byA;;} is indeedSU(N). From expression (5), we can write the
Hamiltonian of theN-level JCM (1) of E-type as a linear function of;;,

a

N N
H=o0A+Y oj(A)Ai+ Y (fi(A)Aii 1+ HC) (6)
i=1 i=2
wherew;(A) = w; —ki+ p(A—ki), and f;(A) = pi(A —ki),/ L34 which is obtained
from the project properties df;:

pi(a*a)a*bfbi 1 = pi(A —ki)a'bibi 4

N
plata) =7 p(A—ki)b/b;. (7)
i=1
Since the constant of motiod commutes with every member of ti$é/ (V) algebra, it can
be treated as a constant in the irreducible representation space of the algebra

L(m) ={lp(m, N)),|p(m +k, N =1)),....[¢(m+ (N — Dk, D)} €

which is also the irreducible invariant subspace of the Hamiltonian, and the state space is
the summation of all’(m).
Similarly, for the V-type or A-type interaction, the Hamiltonian can also be treated as
linear function of the generators of ti$&/(N) group. For theV-type, the generators are
A —k)!
An = %a"bﬁbl Ay = Af i#1 9)
A1 =bib Aij = b b; (i,j#D. (10)
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They have the same commutation relations as that of (5). The Hamiltonian expressed in
terms of4;; is

N N
H=o0A+Y oj(A)Ai+ Y (fi(A)A + HO) (11)
i=1 i=2
where
Al
Ji(A) = pi(A = k) @—n
and

w1(A) = w1+ p(A) andw!(A) = w; —k + p(A — k).
Similarly, for the case ofA-type, the generators with the same commutation relations are

chosen as
Al thp+ + ;
Ay = md b;"bn Ani = Ajy i #N) (12)

ANN Zb;bN Aij zbjbj (l,] #N) (13)

and the linear form of the Hamiltonian reads

N N-1
H=0A+)Y o[ (A)Ai+ Y (fi(A)Ay +HO) (14)
i=1 i=1
where
0} (A) = w; +k+ p(A+k) (i # N) wy(A) = wy + p(A)
and

A+ !
£i(B) = pi(A +k),/%.

In the above discussions, the key procedures to obtain the algebraic structure are based

on the existence of the conservation of excitatisbnand the project properties @f'b;.
These two properties enable us to construct an algebra whose members commute with
In fact, in the Hamiltonian (1), for all three types of interaction, there are dhly 1 ways

of coupling betweer atomic levels: forE-type only adjacent levels are coupled, for
V-type, the coupling is restricted between the lowest level and other levels, andtfqre
only the highest level is coupled with other levels. It is easy to see that any kiNdle¥el
JCM has a conservation of excitation in the forn=a*a + Y, c;b;"b;, if there are only
N — 1 ways of coupling betweeV atomic levels where the coefficients is determined
by the interaction. As a result, for any-level JCM, in the one-electron case, the algebraic
structure isSU(N) if it has a conservation of excitation.

When N = 2, all three kinds of Hamiltonian coincide with each other, and $b&2)
algebraic structure is the same as that of [11]. In this case, the JCM behaves Iike%a spin-
system interacting with an external magnetic field; the solutions of the equation of motion
can be obtained algebraically in the same way as that of%rsiystems. In the following,
we show that, whemv > 2, the solutions of this kind of linear system can also be worked
out by an algebraic method.

When a Hamiltonian is expressed as a linear function of a Lie group’s generators,
there are many algebraic methods to obtain solutions of the equations of motion. One of
the methods that can deal with general Lie algebraic structure is the algebraic dynamics
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[12,13]. An important procedure of algebraic dynamics to obtain solutions of a linear
system is to find a gauge transformation that transforms the time-dependent Hamiltonian
into a linear function of the Cartan operators of the Lie algebra. Then the exact solutions
are obtained by the inverse gauge transformation. Since this method involves integrating
a set of ordinary differential equations, it cannot be used directly in the Hamiltonians (6),
(11) and (14) because the coefficientscontain the operatoA. This difficulty can be
overcome if we restrict ourselves in an irreducible representation subspace $¥ the)
algebra in which the operatax, and thus the coefficients, can be treated as a constant.
The detailed procedure to obtain solutions for a general time-dependent linear system which
covers the case of the above discussed JCM can be found in [12, 13].

In the following, we show that, in the case when the considered Hamiltonian is
autonomous (it is not dependent on time explicitly), we need only solve algebraic equations
to obtain the solutions of the equations of motion, as well as the eigenvalues and eigenstates
of the Hamiltonian, if we let the gauge transformation be independent of time. As a result,
the solutions for theV-level JCM are algebraic expressions whén< 4. The eigenphases
in the time-dependent case can also be obtained in this way.

According to standard Lie algebraic theory [15, 16], if a Hermitian operator is a linear
function of the generators of a compact semisimple Lie group, it can be transformed
into a linear combination of the Cartan operators of the corresponding Lie algebra by
the transformation

H— H =UHU! (15)
whereU is an element of the group which in general has the form
N
U =] [expxiA) (16)
i=1
and {A;} (i = 1,...,N) is a basis set in Cartan standard form of the semisimple Lie

algebra, and;; can be set to zero if the correspondiAgis a Cartan operator (an element
of the Cartan subalgebra). The order of the operators in the above equation can be chosen
arbitrarily, but the coefficients; are dependent on the order.

From equation (15), the procedure to obtain the solutions of a linear autonomous system
is as follows.

(1) Put the expression df, equation (16), into the right-hand side of (15) and let the
coefficients of the non-Cartan operator vanish. Thus one obtains a set of algebraic equations.
From these algebraic equations one can obtain a set of solutions of

(2) From the eigenvalues and eigenstateg/6fvhich are the common eigenvalues and
eigenstates of the Cartan operators, one obtains the Hamiltonian’s eigenvalues which equal
that of H’ and the eigenstates by inverse transformatior.

(3) The matrix elements of the time evolution operator can be obtained easily from the
eigenvalues and eigenstates of the Hamiltonian. Thus one can obtain the solutions of the
equations of motion for any initial conditions.

In the first step, we need to assume an order of the operators on the right-hand side of
(16). Although any specified order has a solution, a properly chosen order can simplify the
procedure to obtain the coefficients For theN-level JCM with SU (N) structure (whose
Cartan operators arg;; = bl.+ b;), the transformation operatdf can be chosen as

U = exp(xn1An1) eXP(xy2Ap2) ... eXplxiy A1n) (17)

where the order of the operators of €xpA;;)(i # j) is arranged according to the roots
of A;; in a decreasing way. For example, the rootAy; is highest, and that oAy is
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lowest. With this specification, in our experience the coefficiaftsre relatively easy to
work out. Of course, there exist other equally effective choices, especially when one deals
with a specified system.

As an illustration, consider the three-level JCM®itype. Another case can be worked
out similarly. Many applications of three-level JCMs can be found, for example, in [17-23].
The Hamiltonian of the three-level JCM &-type reads

3
H =wA + Za);Au + foA12+ f3A2z+ foA21+ f3Asz2. (18)
o1

The transformatiorV is chosen to be six successive transformations
U = U3z1U21U3U12U23U13 (19)

where U;; = exp(x;j(A)A;;), and the coefficients;; are determined from the following
equations:

—w'x13 — foxoz — x13(w5 — faxz3) =0

f3 — fax13 — whxo3 + wixo3 — fax2, =0 (20)
f2 — wix12 — faxZ, + fax13 + x12(wh + faxaz) =0 (21)
fa— (w5 — faxo3)xzz + (wh — fox12+ fax23)x32 =0 (22)
fo 4 (@1 + fax12)x21 — x21(w) — fax12+ faxz3) =0 (23)
(w + fax12)x31 — (w3 — fax23)x31 + foxsz = 0. (24)
After the transformation (19), the Hamiltonian becomes
H' = oA + (0] + fox12)b] b1 + (05 — fax12+ faxa3)bs by + (wy — f3x23)b3 bs. (25)

Note that the solutions of;; from equations (20)—(24) are algebraic expressions;aind
fii = 1,2,3): from equations (20) we obtain the solutionsaf and x3; putting the
results into equation (21), we obtaii, by solving a two-order algebraic equations,,
X21, x31 can be obtained in the same way. In fact, equations (20)—(24) are obtained by
successively applying the transformatiéh— U,-,-HUl.;l, and after each one or two steps
we require that the corresponding coefficients4pf vanish. For example, after the first
two transformationd/;3 and U,3 we obtain equation (20) from the requirement that the
coefficients ofA;3 and A,z vanish. Then after the third transformatioh, equation (21) is
obtained by the requirement that the coefficienti@$ equals zero. The following equations
(22)—(24) are obtained in the same way.

The key of the above procedure is that the vanished generatprdo not reappear
in following steps of transformations. This results from the choice of the ordéf; ,oin
equation (19). Indeed, fa8U (N) algebra, we have the following equations:

eXp(xA,-j)Aii eX[.X—XAij) =A; — xAij
quXA,'j)Ajj eX[X—XA,'j) = Ajj + XAij
EXFXXA,']‘)A]‘,' exp(—xA,-l,-) = Aj,' + x(A;; — Ajj) - szij

eXPXA;j)Apmi EX—XxA;j) = Api — X Apj (m#1i,J)
EXPXxA;j)Ajn eXP(—xA;j) = Ajy + xAjy (n#1i,j)
exXpxA;j) A, eX(—xA;j) = Ay (m,n #1,j). (26)

Thus, if both 4;; and 4,,, have positive (or negative) roots, then the transformation
expxA;;) transformsA,,, into a linear combination of some generators whose absolute
values of their roots are equal to or larger than thatdgf,, but the sign of the roots
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remain unchanged. Taking into account the fact that there iS@®2) subalgebra in
the SU(3) algebra, the order of/;; in equation (19), which is arranged according to the
corresponding roots, ensures that the vanished roots do not reappear during the following
steps of transformations.

From equation (25), it is easy to see that the common eigenstatés ahd A are
{l¢(m, 1))} of equation (2), and the corresponding eigenvalbgs are

En1=(m+kw+ wy(m+k)+ folm + k)x1o(m + k)
En2 = (m+ 2k)w + wy(m + 2k) — fo(m + 2k)x12(m + 2k) + fa(m + 2k)x3(m + 2k)
Ena= (m+ 3w + wfy(m + 3k) — fa(m + 3k)x23(m + 3k). 27)

{E,.;} are also eigenvalues of the Hamiltonian correspond to the eigendtéie i)) =
Ul¢(m,i)) which can be easily obtained from the project propertied of (A,-j)2 =0, or
explx;;A;;) = 1+ x;;A;;. From the Hamiltonian’s eigenvalues and eigenstates, we obtain
the time evolution matrix

Ut) =) |W(m, i)) eXp(—iEy i) (W (m, i)]. (28)
m,i
It is block diagonalized in the bas{$p(m, i))} and every block is a & 3 submatrix.

In summary, based on the existence of conservation of excitation and the project property
of the Fermion annihilation operatass we construct a unifiedU (N) algebraic structure of
a generalizedv-level JCM. It is the conservation of excitation which leads to ${i&(N)
structure that makes various JCMs exhibit similarity. Furthermore,SitiéN) structure
enables us to describe the solutions of the equation of motion in a unified way.

Although, we restrict ourselves to the one-electron case, the above discussions are
equally applicable to the&v — 1 electron case in aWv-level JCM. In fact, from the view-
point of electron—hole duality, the annihilation operaipcan be viewed as the hole creation
operator and;" the hole annihilation operatet” = b;, ¢; = b;". Thus the Hamiltonian in
this case can be viewed as a hole interacting with one mode of the field. The total number
of holes Zf’zl cfe; = 1is conserved. This leads to the project property;ofc;c; = O.

Thus, as in the one-electron case, we can construdagV) algebraic structure for this
one-hole case. As a result, the two-electron case in the three-level JCM also possesses an
SU (3) structure.

The method used to obtain the solutions for the three-level JCM can be similarly used
for other cases. In the two-level case, the result is the same as that of [11]. For the four-
level case, the solutions can also be written as algebraic expressions. However, when the
atomic levelN > 5, the general solution cannot be written as an algebraic expression and
thus we need to resort to a numeric method to find solutions in an irreducible representation
subspacéd”(m) of equation (8).
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